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e�ects are predicted to be naturally small. These models also predict the
value of the �-term to be naturally small and have the potential to qualita-
tively explain the observed mass hierarchy among quarks and leptons. We
then discuss examples of high scale renormalizable theories that can justify
the choice of the the e�ective action from naturalness point of view.
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I. INTRODUCTION

Supersymmetry provides ways to solve many of the puzzles of the standard model

such as the stability of the weak scale under radiative corrections as well as the origin

of the weak scale itself. Local supersymmetry provides a promising way to include grav-

ity within the framework of uni�ed theories of particle physics eventually leading the

way perhaps to a theory of everything in string models. For this very good reason, su-

persymmetric extensions of the standard model (MSSM) have been the focus of intense

theoretical activity [1] in recent years. Since experimental observations require super-

symmetry to be broken, it is essential to have a knowledge of the nature and the scale of

supersymmetry breaking in order to have a complete understanding of the physical im-

plications of these theories. At the moment, we lack such an understanding and therefore

it is important to explore the various ways in which supersymmetry breaking can arise

and study their consequences.

There are several hints from the study of general class of MSSM which could perhaps

be useful in trying to explore the nature of supersymmetry breaking. Two particular ones

that rely on the supersymmetric sector of model are: (i) natural suppression of avor

changing neutral currents (FCNC) which require a high degree of degeneracy among

squarks of di�erent avor and (ii) stringent upper limits on the electric dipole moment of

the neutron (NEDM) which imply constraints on the gaugino masses as well as on the A

and B terms of MSSM [2]. One could take the point of view that the above conclusions

may be telling us something about the nature of supersymmetry breaking. If this is true,

then it is important to isolate those SUSY breaking scenarios which realize the above

properties in a simple manner and study their implications.

The standard way in which supersymmetry breaking is implemented in model build-

ing is to postulate the existence of a hidden sector where local supersymmetry is sponta-
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neously broken and then �nd an appropriate way to transmit them to the visible sector.

The various classes of models can be isolated depending on the way the SUSY breaking

is transmitted. The two popular ones widely discussed in the literature are: (a) Polonyi

type models where the SUSY breaking is transmitted via the gravitational interactions.

The typical scale of SUSY breaking in such models is of order of
p
MWMP` ' 1011

GeV and (b) the so called Gauge Mediated Susy Breaking (GMSB) type models [3],

where SUSY breaking is mediated by the gauge interactions of the standard models via

one and two loop radiative corrections (for instance squark squared masses are of order

of m2
~q '

�
�
4�

�2
�2). So the natural scale of SUSY breaking in these models is of order

10�100 TeV raising the possibility that they are accessible to low energy tests at current

and planned accelerators. The GMSB models have the extra advantage that the FCNC

e�ects are naturally suppressed due to the fact that at the scale �, the squark masses are

all degenerate due to the avor blindness of the standard model gauge group. However

they su�er from the so called � problem since the gauge interactions being U(1)PQ sym-

metric do not generate a � term. One can however add new interactions to the model to

solve this problem [4].

In this paper, we discuss another class of models where the SUSY breaking is caused

by the existence of an anomalous local U(1) around the Planck scale, which due to the

Green-Schwarz mechanism for anomaly cancellation leads [5] to a linear D-term which

leads to supersymmetry breaking via the Fayet-Illiopoulos mechanism. Attempts have

recently been made [6,7,8,9] to build realistic particle physics models using this new

SUSY breaking mechanism. This SUSY breaking is fed down to the visible sector [7]

both by the D-term as well as by the supergravity e�ects. It was shown in Ref. [7]

that in the resulting theory, the gaugino masses are suppressed. It was also conjectured

in Ref. [7] that the FCNC and CP violating e�ects in these models are suppressed. In

Ref. [9], explicit models were constructed where both the FCNC e�ects as well as the
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electric dipole moment of the neutron were shown to naturally suppressed. It was further

shown how one may have a suppressed � term in these models using the Giudice-Masiero

mechanism [10] and how one may hope to understand the fermion mass hierarchies. The

primary features of these models that helped in solving the FCNC and the SUSY CP

problems are that the relative squark mass di�erence (between the like-charged squarks

of the �rst two generations) Æq � �m2
~q=m

2
~q, the gaugino masses relative to the average

squark masses Æ� � m�=m~q as well as �=m~q and A=m~q are all small, with the suppression

characterized by a common parameter � ' 10�2. The � parameter is related to the

magnitude of the U(1) anomaly [11] which can be calculated in terms of the low energy

fermion spectrum and is therefore not an arbitrary parameter.

It is the goal of this paper to elaborate on the various results of the Ref. [9] as

well as to study the naturalness of the various higher dimensional non-renormalizable

terms necessary in this model in terms of higher scale renormalizable theories. We �nd

that indeed it is possible to generate only the desirable non-renormalizable terms in

the e�ective low energy theory. We also study in more detail the implications of such

underlying theories for fermion masses as well as FCNC and CP violating e�ects. The

paper is organized as follows: in Sec. 2, we present the e�ective Lagrangian for the for

the model and discuss the electroweak symmetry breaking; in Sec. 3, we discuss the

electrweak symmetry breaking in the model; in Sec. 4, we show how the suppressions

of the FCNC and SUSY CP e�ects arise; in Sec. 5, the implications of the model for

the fermion masses is discussed. In Sec. 6, we discuss the naturalness of the low energy

e�ective action in terms of an underlying renormalizable theory. In Sec. 7, we discuss the

cancellation of the cosmological constant in the model and make some brief comments

on the mass spectrum of the theory.
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II. EFFECTIVE ACTION FOR THE MODEL

As already alluded to, the crucial feature of the model is the existence of a U(1)

gauge group, which is anomalous. The U(1) group may be assumed to emerge from

string theories. We will assume that the anomaly is cancelled by the Green-Schwarz

mechanism. Since the U(1) is anomalous, i.e. TrQ 6= 0, a Fayet-Illiopoulos term which is

a linear D-term is always generated as a quantum e�ect. We further assume that there

is a pair of hidden sector �elds denoted by �+ and �� which have U(1) charges +1 and

�1 respectively and that the �elds of the standard model also carry U(1) charges. It is

the assignment of the U(1) charges to quark super�elds that help in the solution of the

FCNC and CP problems and in qualitatively explaining the fermion mass hierarchy. We

assume the following U(1) charge assignment for the �elds of the model (Table I):

Table I

Fields �+ �� Hu Hd Q3; u
c
3; d

c
3 Qi; u

c
i ; d

c
i

U(1)-charge +1 -1 0 +2 0 +1

Table Caption: The U(1) quantum numbers of the various �elds in the theory.

In the above table, i = 1; 2 for the �rst two generations. We have omitted the leptonic

�elds for simplicity; one could assign them same charges as the down quark sector.

Note that both the superpotential W and the Kahler potential K of the model must be

invariant under the anomalous U(1) symmetry. Let us �rst discuss the superpotential

W , which we write as W = W0 +W1 +W2 +W3, where

W0 = m�+��;

W1 = huQ3Huu
c
3;

W2 = (hu;3iQ3Huu
c
i)
��
MP`

+ (hd;33Q3Hdd
c
3)

�2�
M2

P`

+ (hu;ijQiHuu
c
j)
�2�
M2

P`
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+ (hd;3iQ3Hdd
c
i)
�3�
M3

P`

+ (hd;ijQiHdd
c
j)
�4�
M4

P`

;

W3 = (W1 +W2)
�+��
M2

P`

+ � � �: (1)

In the above equation, the ellipses denote all other higher dimensional terms allowed by

the gauge symmetry and make very small contributions to the e�ects isolated below. The

parameter m is chosen to be of the order of the weak scale.

Let us now write down the Kahler potential K(zi; z�i ) for the �elds of the model

generically indicated by zi. It can be written as the sum of two terms: one that involves

the bilinear terms of the form z�i zi and a second piece that involves mixed terms which

are strongly constrained by the U(1) symmetry.

K = K0 +K1;

K0 =
X
i

jzij2;

K1 = �HuHd
���

y
+

M2
P`

+ h:c:+ � � �: (2)

In order to proceed further, we have to write down the potential of the model involving

the scalar �elds ��; H0
u; H

0
d and determine the vacuum state. The part of the potential

containing the �� and �+ �elds reads

V = m2(j�+j2 + j��j2)

+
g2

2

�
2jH0

d j2 + j�+j2 � j��j2 + �
�2
: (3)

where we have ignored the terms of order m=MP` or less. Before discussing the mini-

mization of the full potential, let us consider the part of V setting H0
u = H0

d = 0. It

is easy to see that its minimum breaks supersymmetry as well as the anomalous U(1)

gauge symmetry with [7]

h��i =
 
� � m2

g2

!1=2

; h�+i = 0 (4)
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hF�+i = m

 
� � m2

g2

!1=2

:

If we parameterize � = �M2
P`, for m � MP`, we have h��i ' �1=2MP` and hF�+i '

�1=2mMP`. Assuming that �-term is induced by loop e�ects, one can estimate [5,7]

� =
g2TrQM2

P`

192�2
, so that � can be assumed to be of order 10�2. It was pointed out in ref.

[7] that the gaugino masses are generated in this model by superpotential terms of type

�0W �W�

�
�+��
M2
P`

�
. As a result, one gets gaugino masses to be m�g = �0�m. If we choose

m ' 1 TeV, then we need �0 � 5 to get the gluino mass at MZ of 100 GeV as required

by experiments.

From the K1 term in the Kahler potential supergravity e�ects induce a �-term by

means of the Giudice-Masiero mechanism [10]. Indeed, K1 induces at low energy the

operator

�
Z
d4�HuHd

���
y
+

M2
P`

; (5)

giving rise to a �-term, with � = ��m. Notice that the corresponding B-term in the

potential is induced at order �2, by the term HuHd�
2
��+�

y
+=M

4
P`. There are bigger

contributions to B� from the renormalization group running of the parameters from the

Planck scale down.

III. ELECTROWEAK SYMMETRY BREAKING

We integrate out the heavy �eld �� to obtain the e�ective potential of the light �elds.

Minimization with respect to �� gives

j��j2 = � + j�+j2 + 2jH0
d j2 �

m2

g2
: (6)

The e�ective potential of the �elds (�+;H0
d ;H

0
u) is at the leading order in m

2=M2
P`
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V = 2m2j�+j2 +m2
Hu
jH0

uj2 +m2
Hd
jH0

d j2

� m2
3

�
H0
uH

0
d + h:c:

�
+ D�terms;

m2
Hd

= j�j2 + 2m2 +m2
0;

m2
Hu

= j�j2 +m2
0;

m2
3 = B�: (7)

where we have indicated by "D-terms" the usual D-terms coming from SU(2)
U(1) and
m2

i denotes the supersymmetry soft-breaking terms coming from supergravity, m2
0 � �m2.

Note that all the values in the above equation are at the Planck scale. They have to

be extrapolated down to the weak scale, when we expect that m2
Hu

' j�j2 + m2
2 with

m2
2 � 0 so that Hu has a vacuum expectation value. However since m2

Hd
is proportional

to m2 at the Planck scale, we expect it to remain sizable at the weak scale. This implies

that our model will prefer a large tan �. Also from the equation for eletroweak symmetry

breaking:

1

2
M2

Z =
m2

Hd
�m2

Hu
tan2 �

tan2 � � 1
(8)

we see that for mHd
' 500 GeV, a value of tan � ' 10 may be enough to get MZ of the

desired order. But for instance tan � ' 1 is not at all adequate unless m ' 100 GeV, in

which case we will get much too small a value for the gluino masses.

Let us now look at other parameters of the theory. It is clear from the the Eq. (1)

that Au as well as Ad suppressed by powers of � (Table II):

Table II

A in units of m Au;33 Au;3i Au;ij Ad;33 Ad;3i Ad;ij

� suppression � �3=2 �2 �2 �5=2 �3

Table caption: Degree of suppression of the various A-parameters in the theory.
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Note however that these are the values at the Planck scale and they will evolve to

higher values at the weak scale. It is however important to note that both the values of

A and B remain of order � at most since the value of B at weak scale is proportional

to m�g times the renormalization logarithm factor and similarly for A. For instance a

crude estimate would lead to B� ' �02�2m2, which for m ' 500 GeV can be of order

(50 GeV )2 or so, for � ' 1=30.

IV. FLAVOR CHANGING NEUTRAL CURRENT EFFECTS AND THE

ELECTRIC DIPOLE MOMENT OF THE NEUTRON

Let us now discuss the FCNC e�ects in this model. To study this, we note that squark

masses m2
~q (both left and right handed types) receive two contributions: a universal

contribution from the D-term which is of order m2 and a non-universal contribution from

the supergravity Kahler potential of order F 2
�+=M

2
P` � �m2. As both these contributions

are extrapolated from the Planck scale down to the weak scale the pattern of the �rst two

generation squark masses remain practically unchanged whereas the masses of the stop

receive signi�cant contributions. It was noted in [2] that in order to satisfy the present

observations of FCNC e�ects (such as K0 � �K0 mixing), the mixings between the ~s and

the ~d squarks (i.e. m2
~s ~d
) in the avor basis or the squark mass di�erences between the �rst

two generations in the mass basis must satisfy a stringent constraint. In the avor basis,

it is given by (see Dugan et al., in [2]), Im
�
m4

~s ~d

m4
~q

�
� 6 � 10�8

m2
~q

m2
W

. We have assumed the

phases in our model to be arbitrary; therefore the most stringent constraint comes from

the CP-violating part of the K0� �K0 mass matrix. In our model, m2
~s ~d
arises purely from

the supergravity e�ects are of order � �m2 and the above FCNC constraint is satis�ed if

� ' 10�2 or so. Thus our model con�rms the conjecture of Ref. [7].

The electric dipole moment of the neutron den in supersymmetric models have been
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discussed in several papers [12] and it is by now well-known that the gluino intermediate

states in the loop graph contributing to the den gives a contribution which is some three

orders of magnitude larger than the present experimental upper limit for generic values

of the parameters. The situation is di�erent in our model since we see that a number of

parameters of the model such as the gluino masses, the A and B are down by powers of

�. In order to see the impact of this on the NEDM, we will again consider the charge

assignment for the �rst model where the Kahler potential induced mass splittings in

the squark masses are of order �m2. For the gluino contribution, we borrow from the

calculation of Kizukuri and Oshimo [12], which gives:

den =
2e�s
3�

(sin�uAu � sin ��cot�j�j)

� mu

m2
~q

1

m�3

I

 
m2

~q

m2
�3

!
; (9)

where �u = �Au � ��3 is the di�ererence between the phases of the A-term and the gluino

mass. m~q denotes the mass of the heavier of the two eigenstates. Since in this model,

m�3 '
p
�m and m~q ' m, one �nds that I ' �. This leads to den ' 2�s

3� �
3=2mu

m2 . Here

we have used the fact that A � �m; � � �m. For � ' 10�2, this gives an additional

suppression of 10�3 over the prediction of generic parameter values of the MSSM (i.e.

even form ' 100 GeV, we get den ' 10�25 e� cm). There is also a down quark contribution

with a similar expression; but in this model Ad � Au, only the second term in the above

equation with cot � replaced by tan �. By the same line of reasoning as above, this term

also also naturally suppressed. We wish to point out that the above suppression depends

on the fact that Q1; u
c
1; d

c
1 all have nonzero U(1) charge. If on the other hand, dc and

uc had zero charge, their dominant mass would come from the supergravity e�ect and,

as a result, m2
~dc
� m2

~uc ' �m2. The above gluino contribution to den would then be less

suppressed (by a factor
p
� rather than �3=2).
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V. FERMION MASS MATRICES

Let us now discuss the pattern of fermion masses suggested by this model. First

note that only the Yukawa coupling Q3Huu
c
3 is allowed without any suppression from

the � factor explaining why the top quark has large mass [13,14]. On the other hand,

the other Yukawa couplings are suppressed with powers of � qualitatively explaining why

their masses are so much smaller than the top quark mass.

From the superpotential in Eq.(1), we get the following kind of up and down quark

mass matrices.

Mu = m1

0
BBBBBB@

� �
p
�

� �
p
�

p
�
p
� 1

1
CCCCCCA

(10)

and

Md = m2

0
BBBBBB@

�2 �2 �3=2

�2 �2 �3=2

�3=2 �3=2 �

1
CCCCCCA
: (11)

where m1;2 are mass parameters related to the vu;d and the Yukawa couplings. The �rst

interesting prediction of this model is that mc ' �mt and mb � �mt . Note that these

are in qualitative agreement with observations. ms � �2mt may also be acceptable if � is

not literally 10�2 but somewhat larger. Furthermore, if there is a horizontal symmetry

between the �rst and the second generation, then we expect mu � md � 0 which is also

not unreasonable. We �nd this an encouraging aspect of the model that needs further

study beyond the scope of this paper.
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VI. UNDERLYING HIGH SCALE THEORY AND NATURALNESS OF THE

KAHLER AND THE SUPERPOTENTIAL

In this Section we want to show that the superpotential as well as the Kahler potential

chosen can indeed arise as an e�ective theory from an underlying renormalizable model

which is valid around the Planck scale. The reason for such an exercise is the following:

note that we show that in our model the � term is suppressed naturally to the desired

electroweak scale because it arises from the Kahler potential term HuHd���
y
+. However,

if we look naively at the model, the gauge symmetries also allow a superpotential term

R
d2�HuHd�

2
�=MP` which would lead to a � 'MP`. This would of course be undesirable.

We will show in this section there is an underlying theory where only the �rst term

arises as an e�ective term at low energies and not the latter. Similarly all the higher

dimensional superpotential terms that are responsible for the quark masses can also arise

in this theory. This makes our choice of the Kahler as well as superpotential technically

natural.

Let us assume that theory above the scale �1=2MP` is characterised by the following

�elds in addition to the ones already given earlier: SU(2)L doublet vectorlike, colorless

�elds: L; �L and color singlet and SU(2)L singlet �elds N c
i with i = 1; 2; 3 and color triplet

or anti-triplet �elds Dc; �Dc;Dc0; �Dc0. These particles are assumed to have masses �MP`

and are expected to decouple below MP` so that at � � �1=2MP`, the theory will have

the same structure as in sec.II. Naive decoupling arguments would seem to support this

assumption. The U(1) charge assignment for these �elds are given in Table III.

Table III

Fields L;N c
3 ;

�Dc0 �L;N c
1;D

c0 N c
2

�Dc �Dc

U(1)-charge +1 -1 0 +2 -2

Table caption: The U(1) charge assignment of the �elds of the underlying theory.

12



We also assume that there is a Z2 symmetry under which the �elds L; �L;N c
i (i = 1; 2; 3)

are odd and the remaining �elds are even. The allowed gauge and Z2 invariant couplings

involving the heavy and light �elds can be written as a superpotential W5

W5 = HuL1N
c
1 +M1L�L +M2N

c
1N

c
3 +M3N

c
2N

c
2 (12)

+ N c
1N

c
2�+ +N c

2N
c
3�� +HdN

c
1
�L

+ Q3HdD
c +MDD

c �Dc + �Dc��D
c0 +MD0Dc0 �Dc0 + �Dc0��d

c
3

It is the easy to see that �, B� and Q3Hdd
c
3�

2
� terms are generated by the diagrams

in Fig. 1, 2 and 3 respectively. On the other hand a term of the form HuHd�
2
� is

never generated in the e�ective low energy theory. It is possible to add to the theory

extra Dc and �Dc type �elds with appropriate quantum numbers so that the other higher

dimensional terms that lead to quark masses for lower generations can emerge.

One may have hoped that this underlying theory could be used to completely eliminate

the R-parity violation from the e�ective low energy theory in a natural manner. It

however turns out that in this particular example, it does not happen. There are however

suppressions by powers of � in front of the various R-parity violating couplings.

VII. COSMOLOGICAL CONSTANT AND SPARTICLE SPECTRUM

The model chosen so far has a cosmological constant of order V0 � �m2M2
P`. It is

however easy to set it to zero by adding to the superpotential of the model (Eq. (1)) a

constant term denoted by �3, where � has dimension of mass. Requiring the cosmological

constant to vanish implies that

�6 =
�m2M4

P` � g�2m4M2
P`

3� �+ g�2m2M�2
P`

(13)

The squark mass splittings in this case become of order �m2
~Q
� �

3m
2. This implies
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that for � � 1=30, we get a suppression in the squark mass splittings of order 10�2. The

gravitino mass can be estimated to be m3=2 � ( �
3)

1=2m.

Let us also briey comment on the expected masses of the superpartners in this

model. The two key parameters are the superpotential mass m and the anomaly factor

�. We will assume m ' 500 � 1000 GeV. The value of � is taken to be 1
30
. We then

�nd that at MP`, the gluino mass M ~G ' �0 � (17 � 34) GeV. At the scale MZ , one gets

M ~G ' �0� (51�68) GeV. So if chose �0 � 2, we would be in compliance with the present

experimental constraints. If on the other hand we chose m = 100 GeV as an extreme

example, one would be driven to the light gluino scenario (which though not favored, is

perhaps not excluded [15]). It thus appears that the gluino mass could be a potential

embarrasment for these models if either the light gluino is de�nitively ruled out or one

is unable to add a new source for the gluino mass to the model. At the moment we �nd

these models to have so many attractive features that we wish to pursue them as serious

candidates hoping that this issue will �nd a resolution. As far as the chargino masses are

concerned, if the corresponding �0 is also chosen to be around two, the charginos states

appear nearly degenerate since the �-term in this model is also likely to be small. A

detailed investigation of the expected sparticle spectra for plausible parameter ranges of

the theory is presently under way.

Another point that distinguishes these models from the gauge mediated SUSY break-

ing scenarios is that we expect the squarks of the �rst and the second generation and the

sleptons (assuming the leptons have the same charge +1 as the corresponding quarks) to

have nearly the same mass. Note that in the GMSB models the sleptons are considerably

lighter.

14



VIII. CONCLUSION

In conclusion, we have studied ways to construct interesting realistic supersymmetric

models of quarks and leptons using the idea that an anomalous U(1) gauge symmetry is

responsible for generating supersymmetry breakdown. These models have the attractive

feature that they solve several �ne tuning problems of the MSSM associated with FCNC

e�ects and electric dipole moment of the neutron. They also give desirable values for

the A, the B and the � parameters and also have the potential to qualitatively explain

fermion mass hierarchies. We also show how the e�ective higher dimensional terms used

in making the model realistic can emerge from an underlying renormalizable theory in a

natural manner.
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Figure caption

Figure 1 The one-loop diagram that leads to the e�ective operator HuHd���
y
+ that

gives the �-term at low energies.

Figure 2 The one-loop diagram that leads to the B� term at low energies.

Figure 3 The tree diagram that gives the operator QHdd
c�2� at low energies.
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